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The process of pressure propagation is studied in viscoelastic media during their 
flow in thin-walled tubes of viscoelastic Maxwell and Foigt materials. 

A number of studies [1-3] have been dedicated to questions of pressure propagation in 
Newtonian and non-Newtonian media with equilibrium rheological parameters, moving in elastic 
and viscoelastic tubes. However, it is known that many real media (melted and dissolved 
polymers, conglomerate materials with a polymer binder [4], etc.) manifest viscoelastic prop- 
erties under dynamic conditions. Moreover, recent studies [5, 6] have shown that many highly 
viscous petroleum mixtures with a high content of resin, asphalt, and paraffin components, 
as well as clay and. cement solutions containing polymer additives will manifest relaxation 
properties under certain conditions. It should be noted that nonrigid tubes (well columns, 
tubes with a layer of resin, asphaltenes, or paraffin deposited on the wall, tubes of poly- 
mer material, etc.) also have viscoelastic properties which must be considered in describing 
pressure propagation. 

In the general case, viscoelastic media undergo noninfinitesimal deformations. However, 
as was shown in [7-9], the theory of linear viscoelasticity can be employed with the follow- 
ing assumptions : 

i) in the case of small perturbations which lead to small deformations of the medium; 

2) in cases where the relaxation functions and medium parameters are not dependent on 
the value of the deformation; 

3) in simple shear, where noninfinitesimal and infinitesimal deformations coincide as 
to the character of the change produced in the deformation tensor. 

Using these assumptions, [i0] derived differential equations for the non-steady-state 
motion of a generalized viscoelastoplastic medium in tubes of viscoelastic material. In the 
present study we will examine the process of pressure propagation in flow of such a medium 
within tubes of viscoelastic material, since consideration of the relaxation properties of 
both the moving medium and the tube material upon transient regimes is of both theoretical 
and practical interest in many engineering situations. 

\ 

i. We will consider non-steady-state motion of a relaxation viscoelastic medium, de- 
scribed by the rheological equation e6 + ~ = ~(y + X~) in thin-walled tubes of a viscoelastic 
Maxwell (~ = T/G + z/n) and Foigt (T = G~ + n~) material. 

The problem reduces to solution of a system of differential equations 
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for the Foigt tube, where 
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Elimination of the velocity from Eqs. (i), 
tions in pressure: 
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2.  We w i l l  c o n s i d e r  n o n - s t e a d y - s t a t e  m o t i o n  o f  t h e  r e l a x a t i o n  med ium i n  a v i s c o e l a s t i c  
med ium,  w i t h  t h e  p r e s s u r e  b e i n g  a h a r m o n i c  f u n c t i o n  o f  t i m e  w i t h  s p e c i f i e d  f r e q u e n c y  m a t  t h e  
beginning of the tube. At times sufficiently later than the initial time, the effect of ini- 
tial conditions on the pressure distribution will be negligible. 

We must then find the solution of Eqs. (3), (4) which satisfies the boundary condition 

P (0, l) = Po e~t .  (5)  

The solution of Eqs. (3), (4) satisfying boundary condition (5) has the form 

P (X, t) = Po e~~ (6)  

where 

a = V k l  + ioJks/c; k l= (R, + 0m2S1)/(1 + 0%z); k s = (S, - -  0R~)/(1 + @%s); 
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in the case of Maxwell tube material and 

kl = ((1 - -  0%m 2) Rs + (0 + %) m2Ss)/Q; ks = ((t - -  0zs(0 2) Ss - -  (8 + %) Rs)/Q; Rs = ~ (0~2~ 2 - -  1 - 2ak - -  2a~2); 

8s = 2a - -  ~s (0 + (1 + 2a~) fis); Q = (1 + 0s~ s) (1 + z ~ s )  

i n  t h e  c a s e  o f  t h e  F o i g t  m o d e l .  

S e p a r a t i n g  t h e  r e a l  and  i m a g i n a r y  c o m p o n e n t s  o f  a and  c h o o s i n g  t h a t  r o o t  w h i c h  h a s  a 
n e g a t i v e  r e a l  c o m p o n e n t ,  we w r i t e  s o l u t i o n  (6)  i n  t h e  f o r m  

p = poe e e k e )  (7)  

w h e r e  g = 7'(k3 + k ~ ) ' / 2 ,  v = k a / 2 g ;  k3 = /k~  + make .  The  p a r a m e t e r  g c h a r a c t e r i z e s  t h e  damp-  
i n g ,  and  t h e  p a r a m e t e r  v i s  t h e  d e l a y  o r  p h a s e  s h i f t  o f  t h e  b o u n d a r y  v a l u e  o f  t h e  p r e s s u r e  
h a r m o n i c .  

First we will study the effect of the medium relaxation parameters 8 and I upon the dis- 
tribution of the parameters ~ and ~ over frequency ~. 

The dependence of ~ and ~ on frequency ~ is shown in Fig. i. The curves 2 of Fig. la 
correspond to the larger 8 value. The dashed curves indicate the frequency distributions of 
the corresponding parameters for a viscous liquid [i]. It is evident from Fig. la that over 
some low frequency interval the values of $ for a relaxation liquid are lower than for a vis- 
cous one, while with increase in 0 in this interval the ~ values increase although the in- 
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Fig. i. Quantities $ and v vs frequency for motion of re- 
laxation medium in elastic tube: a) 0~0, %=0; b)0=0, k~0. 

terval itself narrows. With increase in frequency, ~ asymptotically vanishes. This, for 
example, for a = 1 sec -I, e = 5 sec at m = 2 sec -I the parameter ~ = 0.02 sec -~ 

Analysis of Fig. ib reveals that the presence of the relaxation parameter % does not 
change the qualitative pattern of $ and ~ distribution over frequency, as compared to a vis- 
cous liquid (curves 1 and 2, respectively), although the actual n~nerical values can differ 
significantly. 

in the case where both relaxation parameters e and % are nonzero, for a given frquency 
the values of the parameters $ and ~ are larger than those of a viscous liquid at e < % and 
smaller for 0 > %. At e = % the damping and delay parameter values coincide with the cor- 
responding ones of a viscous liquid. 

We will now consider the effect of viscoelastic tube wall properties on the parameters 
and ~. In the case of the Maxwell model ~ increases monotonically with increase in fre- 

quency from y~ = ~ to ~2 = a + B~/2, these being the geometric and arithmetic means of 
the coefficients 2a and B1, while the value of Y2/Y~ decreases from 1 to unity. Also, at 
B1 = 2a the parameters ~ and ~ are independent of frequency. The character of the ~ and 
distributions over frequency as a function of the coefficients 2a and ~ is shown in Fig. 2. 

In the case of a Foigt tube the viscoelastic properties of the walls decrease the delay 
parameter v and at high frequencies ~ asymptotically approaches the value c/c~. Figure 3 
shows the frequency distribution of ~ . Curve 1 corresponds to an elastic tube, and curves 
2 and 3 to presence of a parameter ~2, with curve 3 being for the larger T=. At high fre- 
quencies the damping parameter asymptotically approaches the value ac/c I + (I -- c2/c~)/2B2. 
Small T2 produce a higher damping of the pressure harmonic, while at large ~2 the damping 
parameter decreases. 

The case in which a relaxation medium described by a rheological equation with %~=0 and 
e = 0 moves in a viscoelastic tube is qualitatively no different from the cases studied above 
in which pressure boundary harmonics propagate in a viscous liquid. One need only change all 
expressions in which the coefficients a and c appear, using the substitutions a, = a/(l + 
2ak) and c, = c//l-+ 2a~. 

If ~ # 0 in the rheological model, the value of the damping parameter at higher frequen- 
cies asymptotically approaches ~i/2 for a Maxwell tube, i.e., an adaptive superposition of 
the two effects occurs. Liquid relaxation tends to compensate viscous resistance correspond- 
ing to the coefficient 2a, while tube relaxation, as in the motion of a viscous liquid, in- 
creases the damping parameter ~ at high frequencies by an amount B~/2. At low frequencies, 
it is essentially the viscoelastic properties of the tube walls which manifest themselves. 

3. We assume that initially the flow and pressure in the entire tube occupying the 
semispace x~0 is constant and equal to zero, and at the moment t = 0 at the boundary x = 0 
a pressure ~(t) is applied. 

The solution of the problem reduces to solution of differential equation (3) for the 
case of a Maxwell tube, and Eq. (4) for a Foigt tube. The initial and boundary conditions 
for the problem specified have the form 

Oi P 
clt~ (x, 0 ) = 0 ,  i-.=O, 1, 2, 3, (8) 

P(O, t )=  ~,(t), P(oo, t)= o, t > o .  
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Fig. 2. Quantities ~ and u vs frequency for viscous liq- 
uid motion in a tube of Maxwell material: i) B: = 2a; 

2) B1 > 2 a ;  3)  ~1 < 2 a .  

Fig. 3. Quantity v vs frequency for viscous liquid motion 
in a tube of Foigt material. 

Taking the Laplace transform of Eqs. 

where 

(3), (4), (8), we obtain 
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The solutions of Eqs. (9) and (i0) with boundary condition (ii) have the form: 

P*(x, s)~-q)*(s)exp( x |// (OsZ@(l@2a%)s@2a)(s-'c~i) ) (12) 
~ - - - 7 - ~  Os-b 1 ' 

( vx  / ' ( O s U - r ( l + 2 a A )  s + 2 a ) ( s - l - I / ~ 2 ) s  ~- ( 1 3 )  
p*(x, s)= *(s)exp - -  1/ (Os + 1 / 0  " 

Equations in the original variables may be obtained from Eqs. (12), (13) just as in 
The perturbation propagation velocity is independent of the relaxation parameters of 

the moving medium. In the case of a Maxwell tube material this velocity is the same as in 
an elastic tube with viscous liquid flow and is equal to c. For flow of a relaxation medium 
in a tube of Foigt material, the propagation velocity is higher than for flow in an elastic 

tube, and equal to c 1. 

The equations in the original variables stemming from Eqs. (12), (13) are quite cumber- 
some in the general case. Below we will only analyze special cases and the asymptotic be- 
havior of these solutions. 

In a number of cases to be considered below, we can write the original equations in the 
f o r m  

p (x, 0 = 
i 

0 a t  O~t~.~x/c,, 
B t j. - -  - -  x 

e ~" ~ ( t - - x / c . )  x l / U  c,  q) (t - -  m) x 
x/c, 

X e - dm at t ~ x / c , ,  

where D = d -- b2/4. 
has the form of Eq. 
b = 2a + ~:, d = 2aB1). For the Foigt model the original from Eq. 
(14) at 6 = I and 2a = i/~2(c, = c~, b = I/B2, d = 0). 

(14) 

For example, for a Maxwell model, the original stemming from Eq. (12) 
(14) with ~i = i/r = c, b = (I + 2a~)/e, d = 2a/e), and e = X(c, = c, 

(13) has the form of Eq. 
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When a step in pressure is specified at the beginning of the tube, the value of the per- 
turbation propagation front depends significantly on the system parameters. Analysis of the 
special cases indicated above show that Maxwell tube properties encourage more rapid perturba- 
tion damping, while Foigt properties produce more rapid propagation and damping of the pres- 
sure step as compared to an elastic tube. 

Below we will consider the asymptotic behavior of the solutions of Eqs. (3), (4) for 
propagation of a pressure step. 

In the case of Maxwell tube material, if we assume that 0s<<! only the relaxation prop- 
erties of the tube have an effect on front propagation. The pressure at the front will then 
be: 

P = P0exp (-- ~ -b ~1/2) t), (15) 

where Po is the initial pressure step. 

It is evident from Eq. (15) that Maxwell tube properties encourage greater damping of 
perturbations in comparison to an elastic tube, for which the pressure is described by the 
expression Poexp(--at). 

Equation (15) may be treated in two ways. On the one hand, it describes the front pres- 
sure at large times. On the other, it defines the front pressure at arbitrary time for low 
values of the parameter 0. 

In the case of Foigt tube material at large times (s <<min{i/0, I/T2}) the relaxation 
properties of the tube material and the moving medium have practically no effect on perturba- 
tion propagation. At short time intervals, both in a Maxwell tube (s>>max{I/0, 61})and in a 
Foigt tube (s>>max{I/O, 1/62}) the perturbation magnitude depends only on the relaxation prop- 
erties of the moving medium. In these cases the pressure has the form 

P = Po exp (--  ((1 + 2a~)/20) 0. 

4. For  a f i n i t e  t u b e  t h e  bounda ry  c o n d i t i o n s  f o r  the  c a s e  o f  a p r e s s u r e  s t e p  a t  t he  
b e g i n n i n g  of  t he  t u b e  may be  w r i t t e n  

i P x 0 - - V - ( ,  ) = 0 ,  i = 0 ,  1, 2, 3, t~<O, 
( J b  

(16) 

~P (0, 0 = Po, P (l, t) = 0, t > 0. 

S o l u t i o n s  o f  Eqs.  (3) and (4) w i t h  b o u n d a r y  c o n d i t i o n  (16) can  be  o b t a i n e d  by u s i n g  La-  
placetransforms and expanding the latter in eigenfunctions of the corresponding homogeneous 
boundary problem: 

sinp~x 
P = Po(1- -x ) l l - -  (2Po[l) f .  (t), (17)  

n=l ~n 

P =  Po(�91 x)/l - -  (2Po/l) ~ sinp~x g~(t), (18) 

where ~n = ~n/l, and fn(t) and gn(t) are the originals corresponding to 

(s + ~) (0s 2 + (1 +2aX) s + 2a) (19) 

I f  (s) = s ((0s z + (1 + 2a~ s + 2a) (s + ~1) + c~p] (0s + 1)' 

g~(s) = (~2s + 1) (0s z + (1 + 2a~) s + 2a) (20) 
s (0s z + (1 + 2a~) s + 2a) (~2s + 1) + ~ p] (0s + 1) (.zs + 1) " 

The originals of Eqs. (19), (20) can be calculated for specified parameter values by 
expansion in simple fractions: 

3 

f~ (t) = A~ o -b Z A~ exp (-- s~it), 

3 

gn (t) = ~ B.i exp (-- s~it), 

where  Sni  a r e  t h e  r o o t s  o f  t h e  d e n o m i n a t o r s  of  Eqs .  ( 1 9 ) ,  

(21) 

(22) 

(20) ; Ani and Bni are constants de- 
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pendent on the eigennumbers ~n and parameters of Eqs. (3), (4). Depending on the form of 
the roots Sni the function fn(t) consists of the sum of constants and three damping exponen- 
tials or exponentially damping harmonic components, while gn(t) is the sum of four exponen- 
tial or exponentially damping components. It can be shown that fn(t) and gn(t) contain no 
purely harmonic components for any n. 

The stationary pressure distribution for the Foigt model of the tube material is linear, 
as in the case of an elastic tube. For the Maxwell model, the stationary pressure distribu- 
tion has the form 

Thus,  t h e  r e l a x a t i o n  p r o p e r t i e s  o f  t he  medium moving in  an e l a s t o v i s c o u s  tube  do no t  
a f f e c t  t he  s t a t i o n a r y  p r e s s u r e  d i s t r i b u t i o n ,  j u s t  as  i n  t u b e s  w i t h  F o i g t  p r o p e r t i e s .  How- 
e v e r  tube walls with Maxwell properties do exert an effect in the stationary flow regime. 

NOTATION 

o and y, stress and deformation in medium rheological model; T and s, stress and defor- 
mation in tube material rheological model; ~, viscosity of medium; ~, viscosity of tube mate- 
rial; G, modulus of elasticity of tube material; K~, modulus of volume compression of liquid; 
0, %, TI and ~a, relaxation times; Po, density of medium, R, tube radius; 6o, tube wall thick- 
ness; P, pressure; W, average flow velocity over tube section. 

LITERATURE CITED 

i. I.A. Charnyi, Non-Steady State Motion of a Real Liquid in Tubes [in Russian], Gostek- 
hizdat, Moscow (1951). 

2. I. P. Ginzburg, "Hydraulic shock in tubes of viscoelastic material," Vestn~ Leningr. 
Gos. Univ., No. 13, 99-108 (1956). 

3. R.M. Sattarov, "Hydraulic shock in 'exponential' and nonlinear-viscoplastic media in 
tubes of viscoelastic material," Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 136-141 (1975)o 

4. Z. P. Shul'man, Ya. N. Kovalev, and E. A. Zal'tsgendler, Rheophysics of Conglomerate 
Materials [in Russian], Nauka i Tekhnika, Minsk (1978). 

5. R. M. Sattarov, "Diagnosis of rheological properties of viscoelastoplastic media during 
motion in tubes," Inzh.-Fiz. Zh., 41, No. 6, 1016-1026 (1981). 

6. A. Kh. Mirzadzhanzade, R. M. Sattarov, et al., Methodological Guide to Hydraulic Calcu- 
lation of Non-Newtonian Petroleum Transport [in Russian], VNIISPT Neft., Ufa (1978). 

7. Chang Den Khan, Rheology in Polymer Processing [Russian translation], Khimiya, Moscow 
(1979). 

8. G. V. Vinogradov and A. Ya. Malkin, Polymer Rheology [in Russian], Khimiya, Moscow 
(1977). 

9. R. Christensen, Introduction to the Theory of Viscoelasticity [Russian translation], 
Mir, Moscow (1974). 

i0. R.M. Sattarov and R. M. Mamedov, "Equation of motion of elastoviscoplastic media in 
tubes of viscoelastic material," Izv. Akad. Nauk Azerb. SSR, Ser. Fiz. Tekh. Mat. Nauk, 
No. 6, 76-83 (1979). 

289 


